Thứ Sáu, 9 tháng 1, 2015

Đề thi học sinh giỏi quốc gia môn Toán năm 2015

Kì thi học sinh giỏi quốc gia năm 2015 diễn ra từ ngày 7 đến ngày 10 tháng 1. Môn Toán được thi vào 2 ngày 8-9/1/2015 với 2 đề thi: Đề ngày thứ nhất gồm 4 câu, đề ngày thứ hai gồm 3 câu. Tổng điểm của 2 bài thi là 40 điểm.
Đề thi học sinh giỏi quốc gia môn Toán năm 2015
Đề thi học sinh giỏi quốc gia môn Toán 2015 ngày 2. Ảnh: Facebook
Đề thi VMO 2015 môn Toán
Đề VMO 2015 ngày 1. Nguồn ảnh: FB

Đề thi ngày thứ nhất (8/1/2015)

Bài 1. Cho $a$ là một số thực không âm và $(u_n)$ là dãy số xác định bởi $$u_1=3,\, u_{n+1}=\frac{1}{2}u_n+\frac{n^2}{4n^2+a}\sqrt{u_n^2+3} \text{ với mọi } n\geq 1.$$
a) Với $a=0$, chứng minh dãy số có giới hạn hữu hạn và tìm giới hạn đó.
b) Với mọi $a\in[0,1]$, chứng minh dãy số có giới hạn hữu hạn.

Bài 2. Cho $a, b, c$ là các số thực không âm. Chứng minh rằng $$3(a^2+b^2+c^2)\geq(a+b+c)(\sqrt{ab}+\sqrt{bc}+\sqrt{ca})$$ $$+(a-b)^2+(b-c)^2+(c-a)^2\geq(a+b+c)^2.$$

Bài 3. Cho số nguyên dương $K$. Tìm số tự nhiên $n$ không vượt quá $10^K$ thỏa mãn đồng thời các điều kiện sau:
i) $n$ chia hết cho 3
ii) các chữ số trong biểu diễn thập phân của $n$ thuộc tập hợp $\{2, 0, 1, 5\}$.

Bài 4. Cho dường tròn $(O)$ và hai điểm $B, C$ cố định trên $(O)$, $BC$ không là đường kính. Một điểm $A$ thay đổi trên $(O)$ sao cho tam giác $ABC$ nhọn. Gọi $E, F$ lần lượt là chân đường cao kẻ từ $B, C$ của tam giác $ABC$. Cho $(I)$ là đường tròn thay đổi đi qua $E, F$ và có tâm là $I$.
a) Giả sử $(I)$ tiếp xúc với $BC$ tại điểm $D$. Chứng minh rằng $$\dfrac{DB}{DC}=\sqrt{\dfrac{\cot B}{\cot C}}.$$
b) Giả sử $(I)$ cắt cạnh $BC$ tại hai điểm $M, N$. Gọi $H$ là trực tâm tam giác $ABC$ và $P, Q$ là các giao điểm của $(I)$ với đường tròn ngoại tiếp tam giác $HBC$. Đường tròn $(K)$ đi qua $P, Q$ và tiếp xúc với $(O)$ tại điểm $T$ ($T$ cùng phía $A$ đối với $PQ$). Chứng minh rằng đường phân giác trong của góc $\widehat{MTN}$ đi qua một điểm cố định.

Đề thi ngày thứ hai (9/1/2015)

Bài 5. Cho $(f_n(x))$ là dãy đa thức xác định bởi:
$f_0(x)=2,f_1(x)=3x,f_n(x)=3xf_{n-1}(x)+(1-x-2x^2)f_{n-2}(x)$ với mọi $n\ge 2$.
Tìm tất cả các số nguyên dương $n$ để $f_n(x)$ chia hết cho đa thức $x^3-x^2+x$.

Bài 6. Với $a,n$ nguyên dương, xét phương trình $a^2x+6ay+36z=n$, trong đó $x,y,z$ là các số tự nhiên
a) Tìm tất cả các giá trị của $a$ để với mọi $n\ge 250$, phương trình đã cho luôn có nghiệm $(x,y,z)$.
b) Biết rằng $a>1$ và nguyên tố cùng nhau với $6$. Tìm giá trị lớn nhất của $n$ theo $a$ để phương trình đã cho không có nghiệm $(x,y,z)$.

Bài 7. Cho $m$ học sinh nữ và $n$ học sinh nam $(m,n\ge 2)$ tham gia một Liên hoan Song ca. Tai Liên hoan song ca, mỗi buổi biểu diễn văn nghệ. Mỗi chương trình văn nghệ bao gồm một số bài song ca nam-nữ mà trong đó mỗi đôi nam-nữ chỉ hát với nhau không quá một bài và mỗi học sinh đều được hát ít nhất một bài. Hai chương trình được coi là khác nhau nếu có một cặp nam-nữ hát với nhau ở chương trình này nhưng không hát với nhau ở chương trình kia. Liên hoan Song cả chỉ kết thúc khi tất cả các chương trình khác nhau cỏ thế có đều được biểu diễn, mỗi chương trình được biểu diễn đúng một lần.
a) Một chương trình được gọi là lệ thuộc vào học sinh X nếu như hủy tất cả các bài song ca mà X tham gia thì có ít nhất một học sinh khác không được hát bài nào trong chương trình đó. Chứng minh rằng trong tất cả các chương trình lệ thuộc vào X thì số chương trình có số lẻ bài hát bằng số chương trình có số chẵn bài hát.
b) Chứng minh rằng Ban tổ chức Liên hoan có thể sắp xếp các buổi biểu diễn sao cho số các bài hát tại hai buổi biểu diễn liên tiếp bất kỳ không cùng tính chẵn lẻ.

Không có nhận xét nào:

Đăng nhận xét